Microwave-Assisted Reactions of Schiff Bases with Diethyl Phosphonate in the Presence of CdI₂

M. M. Kabachnik, E. V. Zobnina, and I. P. Beletskaya

Faculty of Chemistry, Lomonosov Moscow State University, Vorob'evy gory 1, Moscow, 119899 Russia

Received July 15, 2003

Abstract—The reaction of diethyl phosphonate with Schiff bases derived from aldehydes and ketones in the presence of cadmium iodide is strongly accelerated by microwave irradiation, and the corresponding α -aminophosphonates are formed in high yields.

Schiff bases are known to react with diethyl phosphonate to give α -aminophosphonates which constitute an important class of biologically active compounds [1-3]. These reactions continuously attract attention from the viewpoints of both stereoselective synthesis of α -aminophosphonates [4, 5] and optimization of the reaction conditions [6, 7]. The use of microwave irradiation (MW) to accelerate various organic reactions has been well documented [8]. This technique has also found application in the chemistry of organophosphorus compounds. Microwave-assisted Arbuzov reaction [9], arylation of diethyl phosphonate in the presence of metal-complex catalysts [10], Wittig reaction [11], and synthesis of α -aminophosphonates in the three-component system amine-aldehyde-diethyl phosphonate [12, 13] have been reported. However, the latter reaction has been performed only with aromatic aldehyde imines.

We previously developed a procedure for the synthesis of α -aminophosphonates by reaction of Schiff bases with diethyl phosphonate using CdI₂ as catalyst [6]. The reactions were carried out by heating the reactants to 45°C over a period of 4–10 h, depending on the Schiff base structure. With the goal of optimizing the conditions for the synthesis of both aliphatic and aromatic α -aminophosphonates, in the present work we examined reactions of various aldimines and ketimines with diethyl phosphonate in the presence of CdI₂ under microwave irradiation.

We found that a combination of CdI_2 catalysis and microwave irradiation leads to very strong acceleration of the process (the reaction time shortens from 3–10 h to a few minutes or sometimes seconds) and considerable increase in the product yields (see table). The reactions of Schiff bases **Ia–Im** with diethyl phosphonate were carried out without a solvent in the presence of 5 mol % of CdI₂ under microwave irradiation. The progress of the reactions was monitored by ³¹P NMR and IR spectroscopy and thin-layer chromatography. According to the ³¹P NMR data, the conversion of both aliphatic and aromatic aldehyde and ketone imines was almost complete, and the corresponding α -aminophosphonates **IIa–IIm** were isolated in 86–95% yield. It should be noted, that the yield of the final product depended only slightly on the substrate structure. The results are summarized in table. In all cases, the yields of α -aminophosphonates in the microwave-assisted reaction were greater than in the thermal reaction.

Less reactive ketimines also readily react with diethyl phosphonate in the presence of CdI_2 under microwave irradation, but the reaction time was longer (up to 10 min). For example, the reactions with *N*-tert-butylbutylideneamine (**Ia**) and *N*-cyclohexylbutylideneamine (**Ib**) with diethyl phosphonate were complete in 45 s, while ketimines **If**, **Ig**, **Ij**, and **Im** with

$$\begin{array}{c} R^{2} \xrightarrow{R^{3}} N \xrightarrow{R^{3}} + (EtO)_{2}P(O)H \xrightarrow{CdI_{2}, MW} R^{1} \xrightarrow{R^{2}} P(O)(OEt)_{2} \\ \downarrow \\ Ia-Im & IIa-IIm \end{array}$$

I, **II**, $R^1 = H$, $R^2 = Pr$, $R^3 = t$ -Bu (**a**); $R^1 = H$, $R^2 = Pr$, $R^3 = cyclo-C_6H_{11}$ (**b**); $R^1 = H$, $R^2 = Pr$, $R^3 = PhCH(Me)$ (**c**); $R^1 = H$, $R^2 = R^3 = Ph$ (**d**); $R^1 = H$, $R^2 = Ph$, $R^3 = PhCH(Me)$ (**e**); $R^1 = H$, $R^2 = Et$, $R^3 = t$ -Bu (**f**); $R^1 = H$, $R^2 = Et$, $R^3 = cyclo-C_6H_{11}$ (**g**); $R^1R^2C = cyclo-C_6H_{10}$, $R^3 = cyclo-C_6H_{11}$ (**h**); $R^1 = R^2 = cyclo-C_5H_8$, $R^3 = cyclo-C_6H_{11}$ (**i**); $R^1 = R^2 = cyclo-C_5H_8$, $R^3 = PhCH(Me)$ (**j**); $R^1R^2C = cyclo-C_6H_{10}$, $R^3 = PhCH(Me)$ (**k**); $R^1 = Pr$, $R^2 = Pr$, $R^3 = cyclo-C_6H_{11}$ (**l**); $R^1 = Me$, $R^2 = 5$ -methyl-2-furyl, $R^3 = t$ -Bu (**m**).

Initial Schiff base no.	Microwave assistance		Heating (45°C)	
	reaction time, min	yield, %	reaction time, h	yield, %
Ia	0.75	92	4.5	77
Ib	0.75	89	3	80
Ic	5	95	7	83
Id	2.5	93	5	75
Ie	7.5	91	7	82
If	0.67	92	3.5	83
Ig	0.83	93	4	80
Ih	1.75	91	6	76
Ii	3	95	7.5	50
Ij	8	88	6	81
Ik	8	93	5.5	58
11	9.5	86	8	63
Im	10	89	-	-

Synthesis of α -aminophosphonates in the presence of CdI_2 under microwave irradiation and on heating

the same substituents on the nitrogen atom required irradiation for ~2–10 min to obtain the corresponding α -aminophosphonates. No phosphorylation of *N*-tertbutyl-1-(5-methyl-2-furyl)ethylideneamine (**Im**) occurred even on heating for 24 h at 45°C, and raising the temperature to 140°C (2 h) led to formation of no more than 20% of aminophosphonate **IIm**. The same reaction performed under microwave irradiation was complete in 10 min, and aminophosphonate **IIm** was obtained in 89% yield.

Thus the reaction of Schiff bases with diethyl phosphonate in the presence of CdI_2 is strongly accelerated by microwave irradiation, and various α -aminophosphonates can be obtained in such a way with high yields.

EXPERIMENTAL

The ¹H NMR spectra were recorded on a Bruker DPX-300 instrument (300 MHz) in CDCl₃ using tetramethylsilane as external reference. The ³¹P NMR spectra were measured on a Varian FT-80A spectrometer (32.4 MHz) using 85% H₃PO₄ as external reference. Silufol plates were used for thin-layer chromatography (eluent hexane–ethyl acetate, 5:1). The newly synthesized aminophosphonates were characterized by analytical data, and the others were identified by comparing their physical constants with those given in [6].

Reaction of diethyl phosphonate with *N-tert***butylbutylideneamine (Ia).** A 25-ml flat-bottom flask was charged with 0.02 mol (2.7 g, 2.5 ml) of diethyl phosphonate and 0.007 g of cadmium(II) iodide, and 0.02 mol (2.5 g, 3.1 ml) of compound **Ia** was added. The flask was placed into a domestic microwave furnace and was irradiated for 45 s at a power of 102 W. The mixture was distilled under reduced pressure to isolate 4.9 g (92%) of compound IIa, bp 69– 71°C (14 mm), $n_D^{20} = 1.4250$. ³¹P NMR spectrum: δ_P 29.0 ppm. α -Aminophosphonates **IIb–IIm** were synthesized in a similar way.

Compound **IIb**. Yield 5.2 g (89%), bp 112–114°C (20 mm), $n_D^{20} = 1.4485$. ³¹P NMR spectrum: $\delta_P 25.9$ ppm.

Compound **IIc**. Yield 5.9 g (95%), bp 134–135°C (25 mm), $n_D^{20} = 1.4553$. ³¹P NMR spectrum: δ_P : 25.5 ppm. Found, %: C 63.26; H 6.01; P 10.20. C₁₆H₁₈NO₃P. Calculated, %: C 63.37; H 5.94; P 10.23.

Compound **IId** was isolated by recrystallization from ethanol; preliminarily, cadmium(II) iodide was separated by column chromatography on silica gel using hexane–ethyl acetate (3:2) as eluent. Yield 5.9 g (93%), mp 89–91°C. ³¹P NMR spectrum: δ_P 26.9 ppm.

Compound **IIe**. Yield 9.4 g (91%), bp 181–185°C (8 mm), $n_D^{20} = 1.6015$. ¹H NMR spectrum, δ , ppm: 1.15 t (6H, C**H**₃CH₂O, ²J = 6.5 Hz), 3.74 q (4H, CH₃C**H**₂O), 3.90 d (1H, CHP, ²J = 16.9 Hz), 4.32 q (1H, C**H**NH), 7.13 m (5H, C₆**H**₅NH), 7.20 m (5H, C₆**H**₅CH). ³¹P NMR spectrum: δ_P 28.5 ppm.

Compound **IIf**. Yield 4.6 g (92%), bp 115–118°C (10 mm), $n_D^{20} = 1.4251$. ¹H NMR spectrum, δ , ppm: 1.06 t (3H, CH₃CH₂, ²J = 7 Hz), 1.15 s [9H, C(CH₃)₃], 1.45 m (2H, CH₃CH₂), 1.51 t (6H, CH₃CH₂O, ²J = 6.8 Hz), 3.04 m (1H, CHP), 4.28 q (4H, CH₃CH₂O). ³¹P NMR spectrum: δ_P 24.8 ppm.

Compound **IIg**. Yield 5.1 g (93%), bp 98–100°C (20 mm), $n_D^{20} = 1.4470$. ¹H NMR spectrum, δ , ppm: 0.82 t (3H, C**H**₃CH₂, ²J = 7 Hz), 1.12 t (6H, C**H**₃CH₂O, ²J = 6.8 Hz), 1.35 m (11H, C₆H₁₁), 1.86 m (2H, CH₃C**H**₂), 2.87 m (1H, CHP), 3.45 q (4H, CH₃C**H**₂O). ³¹P NMR spectrum: δ_P 24.6 ppm.

Compound **IIh**. Yield 5.7 g (91%), bp 96–98°C (8 mm), $n_D^{20} = 1.4882$. ³¹P NMR spectrum: δ_P 27.6 ppm. Compound **IIi**. Yield 5.7 g (95%), bp 114–116°C

 $(8 \text{ mm}), n_D^{20} = 1.5085.$ ³¹P NMR spectrum: δ_P 19.2 ppm.

Compound **II**j. Yield 5.6 g (88%), bp 150–151°C (10 mm), $n_D^{20} = 1.5170$. ³¹P NMR spectrum: δ_P 37.3 ppm. Found, %: C 63.98; H 8.39; P 9.26. C₁₈H₂₈NO₃P. Calculated, %: C 64.09; H 8.31; P 9.20.

Compound **IIk**. Yield 6.3 g (93%), bp 163–164°C (10 mm), $n_D^{20} = 1.4860$. ¹H NMR spectrum, δ , ppm: 1.42 t (6H, C**H**₃CH₂O, ²*J* = 6.8 Hz), 1.48 m (11H, C₆H₁₁), 1.55 d (3H, C**H**₃CH, ²*J* = 7.5 Hz), 4.25 q (4H, CH₃C**H**₂O), 4.45 q (1H, NHC**H**). ³¹P NMR spectrum: δ_P 32.4 ppm. Found, %: C 63.85; H 8.50; P 8.79. C₁₉H₃₀NO₃P. Calculated, %: C 64.96; H 8.55; P 8.83.

Compound **III**. Yield 4.3 g (86%), oily substance. ³¹P NMR spectrum: δ_P 23.8 ppm.

Compound **IIm** was isolated as described above for **IId**. Yield 2.4 g (89.3%), mp 51°C. ³¹P NMR spectrum: δ_P 21.6 ppm. Found, %: C 57.00; H 8.66; N 4.60; P 9.80. C₁₅H₂₈NO₄P. Calculated, %: C 56.78; H 8.83; N 4.42; P 9.77.

REFERENCES

- Alen, J.G., Atherton, F.R., Hall, M.J., Hassall, C.H., Holmes, S.W., Lambert, L.W., Nisbet, L.J., and Ringrose, P.S., *Nature*, 1978, vol. 272, p. 56.
- Bioulac, B., De Tingui, E., Vincent, J.D., and Neuzil, E., Gen. Pharmacol., 1979, vol. 10, p. 121.

- Meek, T.D. and Villafransa, J.J., *Biochemistry*, 1980, vol. 19, p. 5513.
- Sasai, H., Arai, S., Takara, J., and Shibasaki, M., J. Org. Chem., 1995, vol. 60, p. 6656.
- 5. Eur. Patent no. 877028, 1998.
- Kabachnik, M.M., Ternovskaya, T.N., Zobnina, E.V., and Beletskaya, I.P., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 480.
- Kabachnik, M.M., Dokichev, A.N., Ternovskaya, T.N., and Beletskaya, I.P., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 484.
- 8. Lidstrom, P., Tierney, J., Wathey, B., and Westman, J., *Tetrahedron*, 2001, vol. 57, p. 9225.
- Villemin, D. and Simeon, F., Phosphorus, Sulfur, Silicon Relat. Elem., 1998, vol. 133, p. 209.
- 10. Villemin, D., Jaffres, P.-A., and Simeon, F., *Phosphorus, Sulfur, Silicon Relat. Elem.*, 1997, vol. 130, p. 59.
- 11. Sabitha, G., Reddy, M.M., Srinivas, D., and Yadav, J.S., *Tetrahedron Lett.*, 1999, vol. 4, p. 165.
- 12. Yadav, J.S., Subba Reddy, B.V., and Madan, Ch., *Synlett*, 2001, vol. 7, p. 1131.
- Kaboudin, B. and Rahman, N., *Tetrahedron Lett.*, 2001, vol. 42, p. 8211.